Project title:	Carbon storage rock reactions
Hours of engagement & delivery mode	For the Summer program, students will be engaged for 6 weeks only. Hours of engagement must be between 20 – 36 hrs per week and must fall within the official program dates (13 Jan – 21 Feb 2025).
Description:	The project will be offered on-site. Carbon geological storage (CO2 storage) is gaining attention as a new technology in the energy transition. This project involves assessing the underground reactions that may occur with carbon dioxide injection deep into rock formations. Carbonated water leaching experiments will be performed to understand environmental changes if CO2 were to leak into aquifers (underground water resources). Rock and water quality characterisation will also be performed.
Expected learning outcomes and deliverables:	Scholars will gain skills in practical geochemistry data collection, rock characterisation (SEM), and data analysis. They will have an opportunity to generate publications from their research. Students will also be asked to produce a report or oral presentation at the end of their project.
Suitable for:	This project is open to applications from students with a background in chemistry, geology, or chemical engineering and would suit a 3 rd – 4th year student. Experience in SEM-EDS, mineral/rock or water quality analysis is not needed but advantageous.
Primary Supervisor:	Dr Julie Pearce
Further info:	Contact j.pearce2@uq.edu.au or gas-energy@uq.edu.au

Project title:	Thermal energy storage and nuclear storage: rock reactions underground with induced heat
Hours of	For the Summer program, students will be engaged for 6 weeks only.
engagement &	
delivery mode	Hours of engagement must be between 20 – 36 hrs per week and must fall
	within the official program dates (13 Jan – 21 Feb 2025).
	The project will be offered on-site.
Description:	To understand the safety of new technologies such as underground thermal
	energy storage or nuclear energy storage, changes to reservoir rocks
	should be assessed. This project will build an understanding of water-rock
	reactions for a range of clays and rock types with induced heat that can be
	present from thermal storage. Water-rock leaching and rock and water
	chanaes over time will be characterised.
Expected learning	
outcomes and	Scholars will gain skills in practical geochemistry data collection, rock
deliverables	characterisation (SEM) and data analysis. They will have an opportunity to
activerables.	apperate publications from their research. Students will also be asked to
	produce a report or oral precentation at the and of their project
Suitable for:	This project is open to applications from students with a backaround in
	chemistry, aeology, or chemical engineering and would suit a 3^{rd} – 4th year
	student. Experience in SEM-EDS, mineral/rock or water quality analysis is
	not needed but advantageous
D	
Primary	Dr Julie Pearce
Supervisor:	
Further info:	Contact i pearce2@ug edu au or gas-energy@ug edu au
	Contact <u>hpearcez@uq.euu.au</u> or <u>gas-energy@uq.euu.au</u>

Project title:	Innovating wind and solar PV deployment, to enhance resilience of
	Australia's energy system
Hours of	For the Summer program, students will be engaged for 6 weeks only.
engagement &	
delivery mode	Hours of engagement must be between 20 – 36 hrs per week, and must fall
	within the official program dates (13 Jan – 21 Feb 2025).
	The project will be offered on-site, with the student required to work in
	our offices (St Lucia campus) for the majority of the project.
Description:	As the Australian electricity system shifts towards greater dependence on
	wind and solar PV generation, the modelling of transition pathways
	becomes increasingly sensitive to uncertainty in the assumptions about
	future wind and solar technology adoption. However, conventional
	planning studies adopt a static view of future technology evolution,
	considering little change beyond what is currently considered 'best
	practice'. This project will explore whether, and which, future innovations
	in wind and solar PV infrastructure deployment could reduce the overall
	system cost of VRE implementation, and increase system resilience to the
	inherent uncertainty associated with future weather variability.
Expected learning	The student will gain skills in applied modelling, analysis of electricity
outcomes and	generation technologies, and an understanding of long-term energy
deliverables:	system challenges. The work scope will include literature review, data
	synthesis, electricity system modelling and analysis.
	The student will be asked to provide a written report and oral
	presentation, outlining and critiquing the key conclusions from their work.
Suitable for:	This project is open to applications from students with a background in
	engineering, environmental management, or other disciplines with a
	strong analytical background. This project will suit people with a strong
	interest in applied analysis and learning about energy system change.
Primary	Dr Joe Lane
Supervisor:	
Further info:	For further information, please contact Dr Joe Lane (joe.lane@uq.edu.au)
	· · · · · · · · · · · · · · · · · · ·

Project title:	Using satellite data to estimate temporal variation in methane emissions
	for Queensland regions
Hours of	For the Summer program, students will be engaged for 6 weeks only.
engagement &	
delivery mode	Hours of engagement must be between 20 – 36 hrs per week, primarily in
	office (St Lucia campus).
	The project will be offered on-site.
Description:	The growing prevalence of methane-focussed satellites creates a new
	opportunity for assessing how sub-regional methane fluxes might be
	varying over time. This project will collate the available gridded estimates
	of atmospheric methane concentration for sub-regions of Queensland,
	comparing them across satellite products. Temporal variability will be
	assessed on intra-annual and inter-annual timeframes, comparing any
	trends with our bottom-up estimates of methane emissions for the same
	regions. This analysis will provide a valuable step towards the ambition to
	integrate satellite and bottom-up estimates, for improved analysis of
	regional-scale mitigation of methane emissions.
Expected learning	The student will gain skills in data synthesis and analysis, atmospheric
outcomes and	analysis using satellite data, and potentially environmental modelling. They
deliverables:	will be asked to provide a written report and oral presentation, outlining,
	and critiquing the key conclusions from their work.
Cuitable fam	This provides the second section of the providence with a background in
Suitable for:	I his project is open to applications from students with a background in
	with a strong computational and statistical background
	with a strong computational and statistical background.
Duting a mu	De las Lans De Cabasties Hasseins
Primary	Dr Joe Lane, Dr Sebastian Hoerning
SUBOR/ICOP!	
Supervisor:	
Supervisor:	For further information, please contact Dr. loe Lane (ice lane@ug.edu.au)